CORRIGENDUM

'Further experiments in nearly homogeneous turbulent shear flow' by V. G. Harris, J. A. H. Graham and S. Corrsin, J. Fluid Mech. vol. 81, 1977, pp. 657-687.

Phillip Wood has kindly called to our attention some data inconsistencies and misprints in this paper. As a result, we have reviewed the original data sheets, and give below a list of corrections, drawn up with the assistance of Stavros Tavoularis. Most of them stem from the accidental use of an early mean shear value ($44 \mathrm{~s}^{-1}$) in the reduction of data taken later at slightly larger shear ($48 \mathrm{~s}^{-1}$).
p. 658. Fifth and sixth lines should be replaced by the following: mean shear of $d \bar{U}_{1} / d x_{2}=48 \mathrm{~s}^{-1}$, except for the data of figures 1 and 2 , which were taken with $d \bar{U}_{1} / d x_{2}=44 \mathrm{~s}^{-1}$; both these values are about four times that in the earlier cited work. The centre-line velocity was equal to that in CHC $(12.4 \mathrm{~m} / \mathrm{s}$; the only exception was the data of figures 1 and 2 , which were taken with $\left.\bar{U}_{c}=11 \cdot 3 \mathrm{~m} / \mathrm{s}\right)$.
p. 663. Fifth line from bottom should read

$$
\bar{U}_{c}=11.3 \mathrm{~m} / \mathrm{s} .
$$

p. 665, figure 2. On all three ordinate scales for $\bar{U}_{1} / \bar{U}_{c}, 0.5$ should be replaced by 0.4 .
p. 665, caption to figure 2. Last.sentence should read: $\bar{U}_{c}=11.3 \mathrm{~m} / \mathrm{s} \ldots$.
p. 666, start of §4.2. Insert the following sentence: Data presented in figure 3 and the figures which follow were measured with a centre-line velocity $\bar{U}_{c}=12.4 \mathrm{~m} / \mathrm{s}$ and a mean velocity gradient $d \widetilde{U}_{1} / d x_{2}=48 \mathrm{~s}^{-1}$.
p. 669. The following replacement figure 5 shows the high shear line displaced in accordance with $d \bar{U}_{1} / d x_{2}=48 \mathrm{~s}^{-1}$.

Figure 5
pp. 670, 671. In figures 6 and 7, the high shear line and the data, respectively, should be shifted to the right by a factor of $\frac{48}{44}=1 \cdot 09$.
p. 671. In table 1,

$$
\begin{gathered}
\frac{L_{1}}{\overline{u_{i} u_{i}}} \frac{d \overline{u_{k} u_{k}}}{d x_{1}} \text { should be } 0 \cdot 022, \\
\frac{L_{1}}{\left|\overline{u_{1} u_{2}}\right| / u_{1}^{\prime} u_{2}^{\prime}} \frac{d}{d x_{1}}\left(\frac{\left|\overline{u_{1} u_{2}}\right|}{u_{1}^{\prime} u_{2}^{\prime}}\right) \text { should be } 4 \cdot 1 \times 10^{-4} .
\end{gathered}
$$

p. 672. Table 2 should be replaced by the following:

Choice of T...
$T=T_{1}=0.0173 \mathrm{~s} \quad T=T_{B} \approx 0.061 \mathrm{~s}$
$\frac{T U_{\mathrm{c}}}{L_{1}} \frac{d L_{1}}{d x_{1}}$
0.060
$3.3 \times 10^{-3} \quad 11.6 \times 10^{-3}$
$\frac{T U_{c}}{\overline{u_{i} u_{i}}} \frac{d \overline{u_{i} u_{i}}}{d x_{1}}$
$\left|\frac{T U_{c}}{\left(\overline{u_{1} u_{2}} / u_{1}^{\prime} \overline{u_{2}^{\prime}}\right)} \frac{d}{d x_{1}}\left(\overline{\frac{u_{1} u_{2}}{u_{1}^{\prime} u_{2}^{\prime}}}\right)\right|$
0.21
$\left|\frac{T U_{\mathrm{c}}}{\lambda_{12}} \frac{d \lambda_{1}}{d x_{1}}\right|$
$0.088 \quad 0.30$
$0.001 \quad 0.006$
p. 673. Equation (4.11) should be changed to

$$
\begin{equation*}
\left(\frac{\epsilon}{v}\right)^{\frac{1}{2}} / \frac{d U_{1}}{d x_{2}} \approx 9.7 \tag{4.11}
\end{equation*}
$$

and (4.12) should be changed to

$$
\begin{equation*}
\frac{v_{T}}{\nu} \equiv-\frac{\overline{u_{1} u_{2}}}{\nu} / \frac{d U_{1}}{d x_{2}} \approx 160 . \tag{4.12}
\end{equation*}
$$

p. 674. In table 3 the following changes should be made:

$$
\begin{array}{rll}
-\bar{U}_{c} d\left(\overline{u u_{2}}\right) / d x_{1} & \text { should be } & -\bar{U}_{c} d\left(\overline{u_{1} \bar{u}_{2}}\right) / d x_{1}, \\
d \bar{U}_{1} / d x_{2}=44.0 \mathrm{~s}^{-1} & \text { should be } & d \bar{U}_{1} / d x_{2}=48.0 \mathrm{~s}^{-1}, \\
L_{1}=2.1 \mathrm{~cm} & \text { should be } & L_{1}=5.3 \mathrm{~cm}, \\
\lambda_{1}=0.29 \mathrm{~cm} & \text { should be } & \lambda_{1}=0.70 \mathrm{~cm}, \\
\epsilon=3.28 \times 10^{4} & \text { should be } & \epsilon=3.35 \times 10^{4} .
\end{array}
$$

p. 674, near beginning of $\S 4.7$. Change $\epsilon \approx 3.28 \times 10^{4}$ to $\epsilon \approx 3.5 \times 10^{4}$.
p. 674, second footnote. $\left(\frac{1}{3} \overline{u_{k} u_{k}}\right)^{\frac{\pi}{2}} L_{1}$ should be $\left(\frac{1}{3} u_{k} u_{k}\right)^{\frac{3}{2}} / L_{1}$.
p. 678, figure 8. The effect of the correction in ϵ on the 'present work' points is within the scatter. The two u_{1} points (○), the two u_{2} points (\square) and the single u_{3} point (*) furthest from the horizontal axis should be moved 7% closer to the horizontal axis.
pp. 683-687, figures 15-18. The abscissa scale numbers should be increased by a factor of $\frac{48}{44}=1 \cdot 09$.
p. 687. The second Rose citation should be Rose, W. G.

