CORRIGENDUM

'Further experiments in nearly homogeneous turbulent shear flow' by V. G. HARRIS, J. A. H. GRAHAM and S. CORRSIN, J. Fluid Mech. vol. 81, 1977, pp. 657-687.

Phillip Wood has kindly called to our attention some data inconsistencies and misprints in this paper. As a result, we have reviewed the original data sheets, and give below a list of corrections, drawn up with the assistance of Stavros Tavoularis. Most of them stem from the accidental use of an early mean shear value (44 s^{-1}) in the reduction of data taken later at slightly larger shear (48 s^{-1}) .

p. 658. Fifth and sixth lines should be replaced by the following: mean shear of $d\overline{U}_1/dx_2 = 48 \,\mathrm{s}^{-1}$, except for the data of figures 1 and 2, which were taken with $d\overline{U}_1/dx_2 = 44 \,\mathrm{s}^{-1}$; both these values are about four times that in the earlier cited work. The centre-line velocity was equal to that in CHC (12·4 m/s; the only exception was the data of figures 1 and 2, which were taken with $\overline{U}_c = 11\cdot3 \,\mathrm{m/s}$).

p. 663. Fifth line from bottom should read

$$\overline{U}_c = 11.3 \,\mathrm{m/s.}$$

p. 665, figure 2. On all three ordinate scales for $\overline{U}_1/\overline{U}_c$, 0.5 should be replaced by 0.4.

p. 665, caption to figure 2. Last sentence should read: $\overline{U}_c = 11.3 \text{ m/s...}$

p. 666, start of §4.2. Insert the following sentence: Data presented in figure 3 and the figures which follow were measured with a centre-line velocity $\overline{U}_c = 12.4$ m/s and a mean velocity gradient $d\overline{U}_1/dx_2 = 48$ s⁻¹.

p. 669. The following replacement figure 5 shows the high shear line displaced in accordance with $d\overline{U}_1/dx_2 = 48 \,\mathrm{s}^{-1}$.

Corrigendum

pp. 670, 671. In figures 6 and 7, the high shear line and the data, respectively, should be shifted to the right by a factor of $\frac{48}{44} = 1.09$.

p. 671. In table 1,

$$\begin{split} \frac{L_1}{\overline{u_i u_i}} \frac{d\overline{u_k u_k}}{dx_1} \text{ should be 0.022,} \\ \frac{L_1}{|\overline{u_1 u_2}|/u_1' u_2'} \frac{d}{dx_1} \left(\frac{|\overline{u_1 u_2}|}{u_1' u_2'} \right) \text{ should be } 4 \cdot 1 \times 10^{-4}. \end{split}$$

p. 672. Table 2 should be replaced by the following:

Choice of T	$T = T_1 = 0.0173 \text{ s}$	$T = T_{E} pprox 0.061 \ { m s}$
$\frac{TU_c dL_1}{L_1 dx_1}$	0.060	0.21
$\left \frac{TU_{o}}{\lambda_{1}i}\frac{d\lambda_{1}}{dx_{1}}\right $	$3\cdot3 \times 10^{-3}$	$11.6 imes 10^{-3}$
$\frac{TU_c}{u_i u_i} \frac{d\overline{u_i u_i}}{dx_1}$	0.088	0.30
$\left \frac{TU_c}{(\overline{u_1u_2}/u_1'u_2')}\frac{d}{dx_1}\left(\overline{\frac{u_1u_2}{u_1'u_2'}}\right)\right $	0.001	0.006

p. 673. Equation (4.11) should be changed to

$$\left(\frac{e}{\nu}\right)^{\frac{1}{2}} / \frac{dU_1}{dx_2} \approx 9.7 \tag{4.11}$$

and (4.12) should be changed to

$$\frac{\nu_T}{\nu} \equiv -\frac{\overline{u_1 u_2}}{\nu} \bigg/ \frac{dU_1}{dx_2} \approx 160.$$
(4.12)

p. 674. In table 3 the following changes should be made:

$$\begin{split} &-\overline{U}_c d(\overline{uu_2})/dx_1 \quad \text{should be} \quad -\overline{U}_c d(\overline{u_1u_2})/dx_1, \\ &d\overline{U}_1/dx_2 = 44\cdot 0 \, \text{s}^{-1} \quad \text{should be} \quad d\overline{U}_1/dx_2 = 48\cdot 0 \, \text{s}^{-1}, \\ &L_1 = 2\cdot 1 \, \text{cm} \quad \text{should be} \quad L_1 = 5\cdot 3 \, \text{cm}, \\ &\lambda_1 = 0\cdot 29 \, \text{cm} \quad \text{should be} \quad \lambda_1 = 0\cdot 70 \, \text{cm}, \\ &\epsilon = 3\cdot 28\times 10^4 \quad \text{should be} \quad \epsilon = 3\cdot 35\times 10^4. \end{split}$$

p. 674, near beginning of §4.7. Change $\epsilon \approx 3.28 \times 10^4$ to $\epsilon \approx 3.5 \times 10^4$.

p. 674, second footnote. $(\frac{1}{3}\overline{u_k u_k})^{\frac{3}{2}}L_1$ should be $(\frac{1}{3}u_k u_k)^{\frac{3}{2}}/L_1$.

p. 678, figure 8. The effect of the correction in ϵ on the 'present work' points is within the scatter. The two u_1 points (\bigcirc), the two u_2 points (\square) and the single u_3 point (\bigstar) furthest from the horizontal axis should be moved 7% closer to the horizontal axis.

pp. 683-687, figures 15-18. The abscissa scale numbers should be increased by a factor of $\frac{48}{44} = 1.09$.

p. 687. The second Rose citation should be Rose, W. G.

796